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Abstract

This thesis investigates efficient networking techniques for transactional cloud database
systems, with a focus on the modern Linux I/O interface io_uring. Motivated by the
increasing network bandwidth offered by cloud platforms like Amazon Web Services
(AWS) Elastic Compute Cloud (EC2), we explore how io_uring can be leveraged to
optimize network utilization in cloud database architectures.

Through our experiments on AWS EC2 instances, we compare the performance
of io_uring implementations against traditional POSIX networking approaches. Our
results demonstrate that io_uring consistently outperforms POSIX in terms of through-
put, CPU efficiency, and handling of concurrent connections. We observe up to 22%
higher throughput and significantly reduced context switches with io_uring.

We also examine the challenges of network performance variability in cloud en-
vironments and explore alternative approaches like DPDK and tokio-uring-based
implementations. While io_uring shows clear benefits, we highlight the complexities
of optimizing network performance in cloud settings.

This research provides insights into the potential of io_uring for improving network
efficiency in cloud database systems and lays the groundwork for future investiga-
tions into integrating advanced networking techniques with specific cloud database
architectures.
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1. Introduction

The rise of cloud computing, including cloud databases, has transformed the way
organizations manage their data and infrastructure. As businesses increasingly rely on
cloud-based services, the need for efficient networking solutions has become paramount,
particularly in the context of transactional cloud database systems.

In this context, the AWS EC2 platform, with its affordable high-speed 200 Gbit/s
networking capabilities announced in 2023 as part of the new c7gn instances launch,
offers a compelling solution for optimizing the performance and scalability of cloud-
based transactional databases, making the management of network resources one of
the key challenges in cloud-based transactional databases. And as the offered network
bandwidth of AWS EC2 instances and the likes grows and the cost shrinks, the question
of utilization of this newfound network bandwidth becomes more crucial.

One such cloud-native architecture following the Database as a Service (DBaaS)
paradigm in the cloud is Socrates [2]. By decoupling compute and storage, Socrates aims
to achieve better scaling and availability. One of the elements of Socrates architecture
is separate page servers, which store and serve database partitions’ pages to compute
nodes, which serves the goal of decoupling storage and compute, but creates a lot of
network traffic as a result.

As such, this thesis evaluates modern networking techniques that can help with
compute efficient network utilization given typical patterns of requests-replies seen
in cloud-based transactional database systems, namely page services; available in
conjunction with the Linux kernel. This thesis presents an evaluation of high-network
bandwidth instances on AWS EC2 with iperf2/3, an implementation using io_uring
via liburing, and also using a co-routine framework, namely, tokio uring; and a version
made using Data Plane Development Kit (DPDK). Due to time and budget constraints,
the DPDK implementation is not explored fully and is covered only briefly.

With these advanced networking capabilities, the challenges of efficient bandwidth
utilization in cloud database environments are addressed, potentially leading to im-
proved performance and cost-effectiveness of cloud-based transactional database sys-
tems.
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2. Related Work

There do not seem to be any works strongly related to this thesis’s topic. However,
there are many projects and works addressing the efficiency of networking.

There are many libraries and frameworks built to optimize networking applications.
Many of these projects, such as mTCP [18], Seastar [21], F-Stack [8], and many others;
focus on bringing the network stack into the user space, bypassing the kernel and its
limitations altogether. mTCP, Seastar, and F-Stack are built on top of DPDK, while
Seastar also supports a io_uring back-end.

The authors of mTCP [16] identified a few issues with the traditional handling of
Transmission Control Protocol (TCP) connections via the kernel, particularly handling
of the short-lived TCP connections; these include high syscall overhead, resource con-
tention across Central Processing Unit (CPU) cores, inefficient per-packet processing,
and limited scalability. The kernel would spend an large portion of the CPU cycles on
TCP connection management, which leaves less compute for the application processing.
The authors addressed these issues by designing mTCP, a user-level TCP stack, which
bypasses the built-in kernel TCP stack completely, minimizing the syscall overhead
by batching packet I/O and other socket events. Additionally, the authors imple-
mented per-core connection management, which reduces inter-core resource contention,
improving multi-core scalability.

Seastar is designed with the limitations of conventional networking approaches
in mind; mainly, issues tied to multi-threaded and kernel-based implementations.
One of the issues Seastar addresses is the overhead of locking present in multi-core
threaded environments required for coordination. In a more traditional setup, this leads
to performance issues caused by wasted CPU cycles and cache contention. Seastar
addresses this with a shared-nothing architecture. Each core is handling its own
requests, avoiding shared memory and locks, using instead message passing for
coordination. Seastar uses futures and promises abstractions to handle asynchronous
operations, which enable non-blocking multitasking. A future is a result that will be
available later, and a promise will provide the results when it is ready. Using these
abstractions, Seastar can chain operations using .then(), and execute tasks without
waiting, unlike traditional blocking models [21].

In a 2021 study presented at EuroBSDCon, Drew Gallatin demonstrated how Netflix
was able to serve video content at 400 Gbit/s using FreeBSD with hardware support
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2. Related Work

from Mellanox’s ConnectX-6 Dx Network Interface Cards (NICs) [9]. Netflix achieved
this throughput by utilizing inline hardware Transport Layer Security (TLS) (kTLS)
offload, where encryption tasks are handled directly by the NIC, reducing the burden
on the CPU. Additionally, Non-Uniform Memory Access (NUMA)-aware architecture
was leveraged to minimize memory bandwidth bottlenecks. By aligning network traffic
and data storage with specific NUMA nodes, Netflix reduced costly cross-domain
memory accesses, which decrease system efficiency in multi-core architectures. The
authors talked about how it is critical to offload CPU-intensive tasks like encryption
and leverage user-space networking techniques to minimize latency and overhead in
high-throughput environments.

In a blog post by Marek Majkowski from Cloudflare [17], the limitations of the
traditional Linux kernel in handling large-scale network traffic were explored. The
authors demonstrated that while the kernel can handle approximately 1.4 million
packets per second on a single core in their setup, its performance degrades significantly
when packets are spread across multiple cores. As a solution, kernel bypass techniques
such as DPDK, PF_RING, and Netmap were discussed. These frameworks enable
user-space applications to directly access NICs, bypassing the kernel’s network stack
and reducing the overhead of packet processing. Cloudflare’s use of kernel bypass
allows them to handle high-speed traffic more efficiently by dedicating specific NIC
queues to user-space processes, enhancing packet processing rates beyond what the
kernel could handle. The author points out that at the time of writing, there are no
open-source kernel bypass APIs available, and one must use a supported NIC, which
is then usually taken over completely.
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3. Background

In this chapter, we will explore the background of the problem we are trying to solve,
including the challenges and the state of the art in the field. We will also introduce the
technologies that we will be using in the experiments, such as AWS EC2, DPDK, and
io_uring.

3.1. Transactional Cloud Database Systems

Transactional cloud database systems are a type of database systems designed to
handle transactions separately from others, and commit them only if they can be fully
executed, ensuring Atomicity, Consistency, Isolation, Durability (ACID) properties.
These systems are optimized to read and write data entries at high speeds while
ensuring data integrity. These databases utilize Online Transaction Processing (OLTP),
which enables such database systems to execute a multitude of transactions concurrently
[22]. This makes it possible to process data from many users, often accessing and/or
modifying the same data [23].

In 2016, Snowflake introduced a novel model of separating systems into three layers:
data storage, virtual warehouses, and cloud services; or in other terms: storage,
compute, and control layers [7].

Socrates, a novel DBaaS architecture introduced in a 2019 paper from Microsoft [2],
builds on the core ideas of cloud data warehousing, while also introducing unique
advancements. While the ideas introduced by Snowflake are seen in the Socrates
architecture, Socrates emphasizes even further breaking up of storage and compute,
enabling new efficiencies in large-scale transactional workloads. The design of Socrates
followed several goals, which included separation of storage and compute with further
log separation and tiered storage. As a result, we have four tiers of separation: compute
tier - which applications connect to; it handles transactions, log tier - it provides a
separation of log by implementing XLOG, storage tier - which is provided by page
servers, which stores copies of partitions of database, allowing for scaled-out storage,
and mainly serve the pages to the compute nodes on-demand, while also managing
checkpointing and backups onto XStore, which brings us to the fourth tier - durable
and cheap storage - provided by XStore, a storage service by Microsoft [2]. As such,
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3. Background

there is a need for efficient networking for all of the components, with our focus being
mainly on the page servers.

3.2. Shared-Nothing Architecture

Shared-nothing architecture is a distributed computing approach, where each node, or
in our case each thread, of a system is designed to be independent and as self-sufficient
as possible, with its own separate resources such as memory, storage, and processing
power. In this architecture, each node or a worker does not share any resources, and
instead communicates with the rest of the nodes through asynchronous channels.

3.3. io_uring

Efficient network I/O becomes crucial for maintaining high performance and scalability.
Traditional networking APIs in Linux, such as select, poll, epoll, and aio, while
functional, often struggle to fully utilize modern high-speed networks, especially in
scenarios with high concurrency and low latency requirements. This is where modern
networking techniques, particularly io_uring, come into play. Unlike traditional
syscalls, which are blocking, io_uring offers a generic asynchronous syscall interface,
which can be used to submit I/O requests to the kernel, while the application can
continue processing other tasks. As a result, where in the case of traditional syscalls
such as poll or epoll, where we tell the kernel to notify our process when an event
occurs, for us to then take action, we can now tell the kernel what we want to happen
on that event, and then continue processing other tasks, while the kernel will notify us
when the operation is complete.
io_uring, initially introduced by Jens Axboe in 2019, represents a significant advance-
ment in Linux’s asynchronous I/O capabilities [4]. The original paper [4] claims that
using their machine as an example, they could achieve 608K Input/Output Operations
per Second (IOPS) with aio, while using io_uring they could reach 1.7M IOPS with
polling and 1.2M without. io_uring offers a more efficient and flexible approach to
handling I/O operations, which is particularly beneficial for high-performance applica-
tions like cloud-based transactional databases. The key features of io_uring that make
it particularly suitable for this context include:

• Shared Ring Buffers & Batched Submissions: io_uring utilizes two shared ring
buffers between kernel and user space - a Submission Queue (SQ) for submitting
I/O requests and a Completion Queue (CQ) for receiving completion notifications.
This design minimizes the need for context switches and system calls, reducing
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3. Background

Figure 3.1.: io_uring ring buffers diagram. Courtesy - Donald Hunter [13].

computational overhead. See Figure 3.1. Additionally, multiple I/O operations
can be submitted in a single system call, further reducing the computational
overhead associated with syscalls. This is particularly crucial nowadays since
mitigation of CPU exploits such as Spectre and Meltdown resulted in the increase
of CPU cycles spent in each syscall [19].

• Polling Mode: In addition to the interrupt-driven mode, io_uring offers a polling
mode where the kernel actively checks for new submissions. This can significantly
reduce latency in high-throughput scenarios but can introduce unnecessary CPU
load.

• Zero-copy Design: The shared ring buffer architecture allows for zero-copy oper-
ations in many scenarios, improving performance by reducing data movement
between kernel and user space.

As pointed out earlier, the io_uring communication between the application and the
kernel is done using ring buffers. The application writes the requests to the ring buffer,
and the kernel reads them and processes them. The kernel also writes the completions
to the ring buffer, which the application reads. Both the kernel and the application can
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3. Background

write into the ring memory. When there is a new event from the kernel, it stores that
event in the completion queue, and the kernel updates the tail of that ring buffer; and
when the application reads the completions, it updates the head of the completion ring
buffer. By comparing the head and tail of the ring buffer, the application can determine
if there are any new completions.

For cloud-based transactional database systems like Socrates, which involve separate
page servers, io_uring offers several potential benefits. It can significantly improve
the efficiency of network I/O between compute nodes and page servers, reduce CPU
overhead, improve latency in page requests and responses, and enhance scalability as
the number of concurrent I/O operations increases.

We explore how io_uring can be applied to optimize network utilization in these sys-
tems, evaluate its performance characteristics, compare it with traditional networking
approaches, and assess its potential impact on overall system efficiency and scalability.

3.4. Data Plane Development Kit

The DPDK is a set of libraries and drivers for fast packet processing in data plane
applications. It was originally developed by Intel and is now managed by the Linux
Foundation. DPDK is particularly well-suited for applications that require high-speed
network performance, such as Network Functions Virtualization (NFV), Software-
Defined Networking (SDN), and, relevant to our context, high-performance database
systems.

Key features and properties of DPDK that can benefit cloud-based transactional
database systems include:

• Kernel Bypass: DPDK bypasses the kernel network stack, allowing applications
to directly access network interfaces. This significantly reduces the overhead
associated with kernel involvement in packet processing, since we can avoid
frequent expensive syscalls.

• Poll Mode Drivers (PMDs): Instead of relying on interrupts, DPDK uses a polling
mechanism to check for incoming packets.

• Huge Page Support: DPDK uses huge pages for memory allocation. This reduces
Translation Lookaside Buffer (TLB) misses, which improves performance.

• NUMA-aware Memory Management: DPDK is designed to work efficiently on
NUMA systems, ensuring optimal memory usage across multiple processors.
This is particularly relevant for large machines.
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3. Background

• Zero-copy Packet Processing: DPDK allows for zero-copy packet processing,
minimizing data movement and CPU cache pollution.

• Batch Packet Processing: DPDK processes packets in batches, avoiding the cost of
multiple function calls.

In the context of cloud-based transactional database systems like Socrates, DPDK
offers significant potential benefits for the page server component. The high-speed
packet processing capabilities of DPDK can improve the efficiency of data transfer
between compute nodes and page servers.

3.5. Tokio

Rust is a memory-safe programming language that gained traction in the past few years;
however, being a memory-safe language [20], it is not usually loved in the databases
community; nevertheless, it is still an interesting case to investigate.

Tokio is a popular asynchronous runtime for Rust [25]. As an event-driven and
non-blocking I/O runtime, it provides a solid foundation for building fast, reliable, and
scalable concurrent applications, making it a common choice for safety-critical and/or
data-intensive applications, such as Cloudflare’s Pingora library for network services
[6], or services at Discord [12] and Kraken [5]; and was recently promoted by the White
House as part of their press release on defense in cyberspace [11]. In this thesis, we
take a look at the io_uring runtime supported by tokio via an experimental library -
tokio-uring [26].

3.6. Seastar

Seastar is a C++ framework built with high performance in mind. Similar to tokio, it
is built around an asynchronous programming model, with tasks being executed in a
non-blocking fashion by an event loop, allowing for high concurrency. It is also highly
optimized for networked applications and is used in ScyllaDB [21], a high-performance
NoSQL database.
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4. Experiments

In this chapter, we will explore the experimental setup and methodology used to
evaluate the performance of the client-server implementations. We will also discuss
the results obtained from these experiments and the considerations made during the
process.

Unless stated otherwise, all plots have been generated using Python and Matplotlib
[24].

4.1. Nuances of AWS EC2 networking

AWS EC2 networking has a few caveats which can affect the networking performance
in unexpected ways. One such caveat is that the offered network bandwidth may not
always be fully provided. Tests using iperf2/3 on c6in.32xlarge instances in Frankfurt
showed maximum speed of only ∼176 Gbit/s (see Figure 4.1), while the same type of
instances but in the US East region reached ∼196 Gbit/s; both regions promise 200
Gbit/s on this instance type.

Since c6in.32xlarge is quite expensive at ∼$7 per hour, further benchmarks use
c7gn.16xlarge, which also promises a 200 Gbit/s network connection, but costs ∼$4
per hour. Additionally, US East instances usually cost half of Frankfurt instances, and
so US East was used for the rest of the experiments. Given the similarity between iperf2
and iperf3, and a slightly better performance with iperf3, only iperf3 is used in the later
measurements as to save cost.

Additionally, a single-threaded connection does not fill the whole bandwidth, and
one must use multiple streams at the same time. You can see in Figure 4.1 that it
reaches the maximum bandwidth before reaching 64 threads. In Figure 4.2 we can see a
more granular chart for iperf3 on an c7gn.16xlarge instance, which shows that it fills
the bandwidth at 32 threads. This behavior is in line with the Amazon EC2 instance
network bandwidth documentation page, which says that a single-flow is limited to 5
Gbit/s, and in the same cluster to 10 Gbit/s [1]. To ensure that the machines are in the
same cluster, one should request multiple identical machines in a single request.

Furthermore, AWS may throttle instances that are running long-term, high-load
network applications. It is important to keep this in mind when running a batch of
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Figure 4.1.: Average bandwidth relative to the number of threads measured using iperf2
and iperf3 between two instances of c6in.32xlarge in Frankfurt. Made
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between two instances of c7gn.16xlarge in the US East region. Made using
Google Sheets.
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4. Experiments

benchmarks, as throttling can impact the consistency and reliability of the performance
measurements.

4.2. Hardware

The experiments labeled as local were conducted on a desktop machine equipped with
an AMD Ryzen 9 7900X CPU, running Arch Linux with Linux kernel version 6.10.x.

For AWC EC2 experiments, the c6in instances were powered by x86-based CPUs,
while the c7gn instances used ARM CPUs - AWS Graviton3E. Both instance types ran
on Ubuntu Server 24.04 LTS, with Linux kernel version 6.8.0.

Both the desktop machine and the c7gn instances have a single NUMA node.

4.3. Protocol

We iterated over several protocol ideas, but ultimately settled on a very simple protocol
to focus solely on the networking. Initially, the protocol required the client to send
a 4-byte value to the server, which was meant to represent a page number being
requested. The server would then reply with that value repeatedly copied into a page
block of a specific size. Later, this was changed to the following: when the connection
is established, the server continuously sends page blocks to the client for the specified
duration of the test.

A page size of 4 KiB was chosen as a reasonable page size for most experiments, but
other page sizes have also been tested.

4.4. Implementation

The io_uring implementation heavily utilized the tutorials and documentation available
at unixism.net [14]. There are many variables involved in using io_uring. For our
protocol, we mainly focus on page size, thread count, and ring size.

Alongside io_uring implementation, an efficient POSIX version has been imple-
mented as well. This was done to have a baseline for io_uring to be compared to.

Let’s explore the details of the implementation.
In both the server and client, io_uring is initialized using the

io_uring_queue_init() function, which sets up a submission and completion
queue. The queue size used in most experiments was 512, however, this is quite large
for most applications and is not generally advised. Each thread gets a completely
separate ring instance.
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4. Experiments

4.4.1. Memory management

A trivial approach would be to allocate memory using malloc, and to set it free once
the message is sent. A step further would be pre-allocating a pool of buffers, and
cycling through them, as the messages are being sent out. To further improve memory
management, memory pinning to prevent swapping was introduced using the mlock
call; this resulted in a 24% bandwidth increase in local tests.

The server and client both use registered buffers with io_uring using
io_uring_register_buffers() call. This helps avoid copying data between kernel
and user space during I/O operations. Registered buffers offer optimization by reduc-
ing the overhead of repeated memory mappings and un-mappings with every I/O
operation; this is achieved by mapping it into the kernel once. Additionally, using reg-
istered buffers avoids page reference counts on each operation, which further reduces
overhead.

The server and client handle communication by preparing SQEs (submission queue
entries) to send and receive data using io_uring prepare send and receive calls re-
spectively, with zero-copy and fixed where possible. Unfortunately, the zero-copy
send consistently resulted in much lower throughput, and was not used in the later
experiments. These requests are then submitted in batches using io_uring_submit()
to reduce the frequency of system calls. On the client side, after sending a batch of
requests, it waits for completion events using io_uring_wait_cqe(). Then, for each
completion event, the completion queue entry (CQE) is retrieved, and based on whether
or not it succeeds, it is either retried or the send/receive is completed.

4.4.2. Handling Multiple Connections per Thread

Both the server and client are designed to handle multiple connections within each
thread, where each thread manages its connections independently. As was mentioned
earlier in this chapter, AWS limits single flow speed to 5 Gbit/s in different availability
zones, however, we can handle higher throughput per thread, if not for this limitation,
hence, handling multiple connections simultaneously in each thread allows us to
workaround this limitation.

The server adds connections to a connections list, where each threads has its own
list of file descriptors, which are handled by worker threads. Each thread iterates over
its assigned connections, submitting and handling I/O requests while checking for
connection closures or errors using io_uring completion events. To ensure balanced
processing of all connections, the requests are submitted in a round-robin manner,
avoiding starvation of any single connection. Similarly, the client creates multiple
connections in each thread, and I/O operations are managed concurrently.
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4.4.3. Misc io_uring options

IORING_SETUP_SINGLE_ISSUER

The IORING_SETUP_SINGLE_ISSUER flag is an option intended to optimize performance
when only a single thread issues I/O requests to the submission queue. In practice,
this flag did not provide any measurable benefits and was omitted.

SQPOLL

The SQPOLL flag enables kernel-side polling of the submission queue. This will offload
submission handling to a dedicated kernel thread. While this can reduce the overhead
of user-to-kernel transitions, it was not used in our io_ring implementation. The reason
is that SQPOLL introduces a dedicated CPU thread, which would consume resources
constantly; even when there is no actual work to be processed.

IOPOLL

The IOPOLL flag enables kernel-side polling of the completion queue, potentially reduc-
ing latency in high-performance I/O operations. This option performs busy-waiting
for I/O completions instead of relying on asynchronous interrupts, which can provide
lower latency at the cost of higher CPU usage. However, IOPOLL is currently not sup-
ported for network I/O and requires compatible file systems and block devices. In the
future, if new versions of io_uring extend IOPOLL support to network operations, it
could offer performance benefits, particularly in low-latency networking scenarios, by
enabling faster detection of completed I/O operations, and would remove the overhead
of interrupts.
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4.4.4. Hyperparameters

In Figure 4.3 and Figure 4.4 we can see plots for the initial grid search for optimal pa-
rameters for the io_uring client-server implementation running between two instances
of c6in.32xlarge. Note that this experiment used the public link, which is limited to
100 Gbit/s; with iperf, one can reach 96.3 Gbit/s over this link. From this initial grid
search, we can see that targeting a higher bit rate and a higher message throughput is
not always aligned. This grid search found the ring size of 256, the page size of 4 KiB,
and the thread number of 128 to be the most optimal for maximum bit-rate, getting
91.44 Gbit/s in this experiment. As for the optimizing for the highest messages rate, let
us take a look at two cases in Table 4.1. It is evident that the bit rate is quite a bit lower
than the maximum possible. The optimal number of threads is the same in this case.
This implementation achieved 10 million messages per second, however, this requires
a large ring size of 896 or 1024. Given this is using TCP, and we do not have a lot
of control over when exactly the packets are sent out, the messages get buffered into
packets close to the size of the MTU.

Page Size (bytes) Ring Size Message Rate (it/s) Bit-Rate (Gbit/s)
16 896 10989110.61 5.63
32 1024 10261884.47 10.51

Table 4.1.: Two of the most optimal cases for messages rate for the io_uring grid search
between two c6in.32xlarge instances.

To try mitigating the buffering, using the TCP_NODELAY flag was tested. This flag
disables Nagle’s buffering algorithm, which works by coalescing small outgoing packets.
As a result, setting this flag should force the socket to send the data accumulated in the
buffer without considering the packet size. However, based on observations conducted
using Wireshark [27], this option is not reliable, and it appears that the Linux kernel can
ignore it, making it a not very useful option. It was observed that there are still large
packets present. The Don’t Fragment (DF) IP flag was also tested and had similar results
to the TCP_NODELAY flag. Additionally, in local tests with a small ring size, both of these
options dramatically reduce the overall throughput. In Table 4.2 you can see a locally
executed test using io_uring client-server with page size of 4096 KiB, and ring size
8. This is not something that was observed during tests on c7gn.16xlarge instances,
where a substantially larger ring size was used.
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4. Experiments

Figure 4.3.: Grid search plot for io_uring client-server between two instances
of c6in.32xlarge over public network measuring the average Gbit/s rela-
tive to the ring size, page size, and thread count. The x-axis is logarithmic.
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Figure 4.4.: Grid search plot for io_uring client-server between two instances
of c6in.32xlarge over public network measuring the average messages per
second relative to the ring size, page size, and thread count. The x-axis is
logarithmic.

16



4. Experiments

Figure 4.5.: Comparison of io_uring and POSIX implementations on
a c7gn.16xlarge instance. This plot illustrates the average through-
put (Gbit/s) achieved with a single thread while varying the number of
connections per thread, and using 4 KiB messages.
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Configuration Bit-Rate (Gbit/s)
None 22.76

TCP_NODELAY + DF 5.85
TCP_NODELAY 6.01

DF 6.03

Table 4.2.: Comparison of TCP configurations and their impact on the bit-rate in the
local environment with a single thread using 4KiB page size and ring size of
8.

Figure 4.6.: Comparison of io_uring and POSIX implementations on
a c7gn.16xlarge instance. This plot illustrates the average through-
put (Gbit/s) achieved with a fixed number of 8 connections per thread
while varying the number of threads and using 4 KiB messages.
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4.4.5. Effect of Flags on Throughput

In this subsection, we analyze the impact of the four key flags we have imple-
mented in our server-client code on the throughput, namely: ALLOC_PIN, ENABLE_NAGLE,
INCREASE_SOCKET_BUFFERS, and PIN_THREADS.

Figure 4.7.: Boxplot of average throughput (Gbit/s) categorized by whether memory
was pinned to prevent swapping, illustrating the distribution of throughput
in pinned and non-pinned states on a c7gn.16xlarge instance using 2
threads and 4 connections per thread, and using 4 KiB messages.

ALLOC_PIN (Memory Pinning): This flag determines whether memory buffers for
socket operations are pinned using the mlock call; this means that the system will
lock to the specified memory range, and also prevent the memory from getting paged.
This helps reducing page faults and swapping overhead, ensuring faster references to
that memory range. The boxplot in figure 4.7 shows that enabling ALLOC_PIN (set to
1) noticeably increases throughput. The median throughput when memory is pinned
is higher, and the overall variance is reduced, indicating more stable performance.
This performance improvement can also be observed in the heatmap figure 4.11,
where configurations with ALLOC_PIN enabled consistently outperform those where it
is disabled.

ENABLE_NAGLE (Nagle’s Algorithm): Nagle’s buffering algorithm, as described earlier,
combines multiple packets into larger ones, before sending them in one transmission.
From the boxplot in figure 4.8, we can observe that enabling it can reduce throughput
but reduce the overall variance. From the heatmap figure 4.11, we can see that this
generally holds true for most of the combinations of flags.
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Figure 4.8.: Boxplot of average throughput (Gbit/s) categorized by whether Nagle’s
algorithm was enabled or disabled, showing the distribution of throughput
on a c7gn.16xlarge instance using 2 threads and 4 connections per thread,
and using 4 KiB messages.

Figure 4.9.: Boxplot of average throughput (Gbit/s) categorized by whether the socket
buffer sizes were increased, demonstrating the impact of socket buffer
size adjustments on throughput performance on a c7gn.16xlarge instance
using 2 threads and 4 connections per thread, and using 4 KiB messages.
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INCREASE_SOCKET_BUFFERS (Socket Buffers Increase): This flag increases the socket
receive and send buffers’ sizes from 16 KiB to 416 KiB each. This is achieved by setting
socket options SO_SNDBUF and SO_RCVBUF using the setsockopt call. From the boxplot
in figure 4.9 we can see that the throughput is negatively affected by the increased
buffers’ size. This can also be observed in the heatmap figure 4.11.

Figure 4.10.: Boxplot of average throughput (Gbit/s) categorized by whether threads
were pinned to specific CPU cores, illustrating how thread pinning affects
throughput distribution on a c7gn.16xlarge instance using 2 threads and
4 connections per thread, and using 4 KiB messages.

PIN_THREADS (Thread Pinning): With this flag, the thread affinity is being set to a
specific CPU core, using the pthread_setaffinity_np call. The goal of pinning threads
is to reduce context switching and to improve CPU cache locality. It is hard to make
a definitive conclusion regarding this option given the spread of the results, however,
the most performant run was possible only with this option enabled. This could be
attributed to the fact that the used AWS EC2 instances have 64 cores, but we are using
only 16 threads, and by pinning them, we are stopping the kernel from using all cores
for compute.
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Figure 4.11.: Heatmap displaying the combined average throughput (Gbit/s)
across various configurations of ALLOC_PIN, ENABLE_NAGLE,
INCREASE_SOCKET_BUFFERS, and PIN_THREADS flags for the io_uring
version executed on a c7gn.16xlarge instance using 2 threads and 4
connections per thread, and using 4 KiB messages. Each cell represents
the mean throughput for a specific combination of flag settings, using a
consistent blue color gradient for intensity.
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4.4.6. Stability of AWS EC2 networking

Figure 4.12.: Average throughput (Gbit/s) over time for both client and server com-
bined. The benchmark was configured with 16 threads, each handling 1
connection (total of 16 connections), using the io_uring implementation
on a c7gn.16xlarge instance.

AWS EC2 networking in our experience with the c7gn series instances has shown a
notable degree of variability, especially while handling multiple TCP streams. As we
know, each TCP stream is capped at 10 Gbit/s on the same zone instances, and at 5
Gbit/s otherwise.

In Figure 4.12, the overall throughput fluctuates significantly, with drops from around
5 Gbit/s to as low as 3.5 Gbit/s. This variance points to instability in individual con-
nection performance over time, likely due to the way AWS handles network resources.

Further evidence of this instability can be seen in Figure 4.13, where each individual
connection’s performance is tracked. Here, we can observe that many of the connections
exhibit unstable throughput, while a few manage to approach and maintain the 5 Gbit/s
limit.

When we examine the total combined throughput in Figure 4.14, we can observe
the instability at a cumulative level. The total throughput oscillates between 70 and 76
Gbit/s, again indicating that the network bandwidth is not consistent.

Figures 4.15, 4.16, and 4.17 show a more stable throughput. Here each thread handles
multiple connections; these benchmarks were configured with 4 threads, each managing
4 connections (for a total of 16 connections), on a c7gn.16xlarge instance. In this case,
the average throughput over time is more stable, and the per-stream throughput shows
less fluctuation. This suggests that assigning multiple connections per thread helps
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Figure 4.13.: Per-stream (per-thread and per-connection) throughput (Gbit/s) over time
for both client and server combined. The benchmark was configured with
16 threads, each handling 1 connection (total of 16 connections), using
the io_uring implementation on a c7gn.16xlarge instance.

Figure 4.14.: Total throughput (Gbit/s) over time for both client and server combined.
The benchmark was configured with 16 threads, each handling 1 con-
nection (total of 16 connections), using the io_uring implementation on
a c7gn.16xlarge instance.
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Figure 4.15.: Average throughput (Gbit/s) over time for both client and server com-
bined. The benchmark was configured with 4 threads, each handling 4
connections (total of 16 connections), using the io_uring implementation
on a c7gn.16xlarge instance.

Figure 4.16.: Per-stream (per-thread and per-connection) throughput (Gbit/s) over time
for both client and server combined. The benchmark was configured with
4 threads, each handling 4 connections (total of 16 connections), using
the io_uring implementation on a c7gn.16xlarge instance.
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Figure 4.17.: Total throughput (Gbit/s) over time for both client and server combined.
The benchmark was configured with 4 threads, each handling 4 connec-
tions (total of 16 connections), using the io_uring implementation on
a c7gn.16xlarge instance.

mitigate the variance observed when each thread handles only one connection, allowing
for more consistent bandwidth utilization. In figure 4.16 we can observe how each
connection settles in a narrow range, with two groups emerging, one at about 4.75
Gbit/s and another at about 4.05 Gbit/s.

Let us consider a larger case, with 16 threads and 4 connections per thread, as
depicted in Figures 4.18 and 4.19 for the POSIX implementation, and in Figures 4.20
and 4.21 for the io_uring implementation.

In these figures, we can observe a clear pattern where individual connections appear
to establish a "stability zone" — a range of throughput where they settle for a certain
period of time. These zones are not static, however. Over the course of the 60-second
benchmark, we see frequent transitions where connections jump between different
throughput ranges. For instance, in Figure 4.20, some connections that start in a higher
throughput zone (around 3.5 Gbit/s) drop suddenly to lower zones (around 2.5 Gbit/s
or even 1.5 Gbit/s) and remain there for several seconds before potentially returning
to higher zones. This behavior suggests that individual connections are dynamically
adjusting their throughput, likely influenced by factors such as network congestion,
resource allocation, or TCP dynamics. Additionally, in figure 4.20, we can observe how
the blue stream almost completely dies out.

These transitions between stability zones are not limited to reductions in throughput;
we also observe connections jumping upwards. In Figure 4.18, for example, some
connections that initially linger around 1.5 Gbit/s later increase their throughput
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Figure 4.18.: Per-stream (per-thread and per-connection) throughput (Gbit/s) over time
for both client and server combined. This figure represents the POSIX
implementation.

Figure 4.19.: Total throughput (Gbit/s) over time for both client and server combined.
This figure represents the POSIX implementation.
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Figure 4.20.: Per-stream (per-thread and per-connection) throughput (Gbit/s) over
time for both client and server combined. This figure represents
the io_uring implementation.

Figure 4.21.: Total throughput (Gbit/s) over time for both client and server combined.
This figure represents the io_uring implementation.
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to approach 3 Gbit/s. This kind of oscillation highlights the unpredictable nature
of network resource management in multi-threaded, multi-connection environments,
where connections may compete for bandwidth, and resource scheduling may cause
sudden shifts in available capacity.

Moreover, when considering the total combined throughput in Figures 4.19 and
4.21, we can still see the effects of these individual connection variances. Although
the total throughput appears more stable overall, there are still noticeable dips and
peaks, with the bandwidth fluctuating between 170 and 176 Gbit/s for the io_uring im-
plementation, and between 164 and 174 Gbit/s for the POSIX implementation. This
range of oscillation suggests that while the system manages to maintain high aggregate
throughput, individual connections continue to experience fluctuations, contributing to
the overall instability seen at the connection level.

This behavior of fluctuating between throughput "zones" could be attributed to the
way TCP adjusts its window size in response to varying conditions or how AWS EC2 in-
stances dynamically allocate network resources. It is possible that as congestion control
algorithms on each connection react to packet loss or delays, they move between these
zones of stability. Furthermore, the way AWS virtualizes its networking infrastructure
might also introduce variability as bandwidth is allocated across different machines or
across multiple regions and availability zones.

In conclusion, the case of 16 threads with 4 connections per thread offers insight into
the complexity of network behavior on AWS EC2. The frequent transitions between
bandwidth stability zones highlight the challenge of maintaining consistent throughput,
even in high-performance instances. While the total throughput remains relatively high,
the individual connections exhibit significant instability, jumping between different
throughput ranges throughout the duration of the benchmark.

4.4.7. perf analysis

To further understand the performance of the io_uring and POSIX implementations,
we conducted experiments measuring various system metrics using the perf tool. The
results are summarized in Table 4.3.

For this experiment, perf was configured to save results for each second, matching
our stats logging frequency, and the −a parameter was used to include kernel side
compute. Here is an example of the perf commands used:

THREAD_COUNT=16 CONNECTIONS_PER_THREAD=8 sudo -E perf stat -a -o \
perf_server.log -I 1000 ./server

THREAD_COUNT=16 CONNECTIONS_PER_THREAD=8 sudo -E perf stat -a -o \
perf_client.log -I 1000 ./client
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Table 4.3.: Performance metrics comparison between io_uring and POSIX implementa-
tions. The experiment used instances of c7gn.16xlarge with 16 threads and
4 connections per thread, single second slice, and 4 KiB messages.

Metric io_uring POSIX
Server Client Server Client

Throughput (Gbit/s) 108.49 88.94
Messages (Thousand) 52.5 43
Context Switches 8,023 2,185 28,261 8,155
CPU Migrations 74 65 87 70
CPU Cycles (Billion) 24.61 31.01 28.82 33.14
Instructions (Billion) 34.65 33.44 45.24 45.35
Instructions per Cycle 1.41 1.08 1.57 1.37
Branches (Billion) 5.26 5.12 7.11 7.03
Branch Misses (Million) 24.32 27.18 47.47 52.27
Branch Miss Rate (%) 0.46 0.53 0.67 0.74
Bad Speculation (%) 1.3 1.2 2.2 2.0

We can see from the table 4.1 that the io_uring implementation outperforms the
POSIX implementation. In this test case, the io_uring implementation achieves a
throughput of 108.49 Gbit/s and processes 52,500 messages per second, which is
approximately 22% higher than the POSIX server’s throughput of 88.94 Gbit/s and
43,000 messages per second.

It is also evident that the io_uring implementation endures fewer context switches
compared to the POSIX version. The io_uring server and client have 8,023 and 2,185
context switches respectively, whereas the POSIX server and client have 28,261 and
8,155 context switches. This reduction in context switches contributes to the improved
performance because the context switches create overhead.

In terms of CPU cycles and instructions executed, the io_uring server uses fewer
CPU cycles (24.61 billion) and executes fewer instructions (34.65 billion) compared to
the POSIX server (28.82 billion cycles and 45.24 billion instructions).

Additionally, the branch prediction metrics also favor the io_uring implementation.
Both the io_uring server and client have a lower branch miss rate compared to the
POSIX versions, sitting at 0.46% and 0.53% for io_uring, while it is 0.67% and 0.74%
respectively for POSIX.

To gain deeper insights into the performance characteristics of our implementations,
we generated flame graphs using the perf tool and the FlameGraph visualization
scripts [10]. With flame graphs, we can observe the stack traces graphically, which
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allows us to identify where our program spends most of its time. Figures B.1 and B.2
show the flame graphs for the client and server implementations, respectively.

The following is an examople of the command used to profile the server (a similar
command was used for the client):

./build/server &
SERVER_PID=$!
sleep 30 # We want to record one second in the middle of the run
perf record -F 99 -o perf_server.data -g -p $SERVER_PID -- sleep 1 &
PERF_SERVER_PID=$!
wait $PERF_SERVER_PID
perf script -i perf_server.data > perf_server.script

Using this approach, we can observe one second of execution of our programs in
the middle of the run, where we avoid the noise of the setup and destruction of the
program.

From the generated flame graphs, we observed that io_uring_submit takes up the
largest portion of the execution time; however, in the server flame graph, we can also
see that about 20 per cent of the time is taken up by the io_uring_wait_cqes call. You
may find the full charts in the appendix - Figure B.1 and Figure B.2.
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4.5. tokio uring

Up to this point, all implementations used C/C++ code. In this section, we explore
the use of io_uring in Rust by leveraging the asynchronous runtime provided by the
Tokio framework, specifically tokio-uring, which offers a more abstracted interface
to io_uring while maintaining the benefits of asynchronous, high-performance I/O
operations.

The tokio-uring library simplifies working with io_uring in Rust by abstracting away
much of the complexity. While this allows using io_uring without directly handling
lower-level I/O operations, this abstraction comes at a potential performance cost, since
it allows for less fine-grained control compared to manually handling io_uring opera-
tions in C/C++ via liburing [3].

The server is made to handle multiple clients at the same time. For each new client, it
spawns an separate task, which then sends 4 KiB messages to the client for the duration
of the benchmark. Additionally, preallocated io_uring fixed buffers [15] are used to
optimize memory management in the Linux kernel.

The client follows the same protocol as previous experiments, where it sends a 4-byte
message representing a page number, and in return receives a 4 KiB reply with the
same message repeated over and over in the reply.

In a local test over the loopback network interface, the implementation reached
an average throughput of 26 Gbit/s, which is lower than the maximum achievable
bandwidth we can observe in the C++ io_uring implementation, which can reach
75 Gbit/s in local tests over loopback. This could be attributed to the abstraction
overhead of the library. Unlike in C++ io_uring version, we can’t batch multiple write
requests, or add multiple read requests in advance, knowing that the client is expected
to send a large number of requests.

4.6. DPDK

In this section, we talk about the DPDK implementation of the server and the client.
Since DPDK requires supported NICs, all development and testing was done on AWS
EC2 instances; and ultimately, due to budget and time constraints, the DPDK version
of the server and the client was not fully fleshed out, reaching only about 8 Gbit/s
throughput on c7gn.16xlarge instances.

Manual ARP Handling in DPDK: Unlike in a typical network setup using the kernel
stack, where the kernel handles Address Resolution Protocol (ARP) when using DPDK,
it must be handled manually. This is due to the fact that DPDK is bypassing the kernel,
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meaning there’s no automatic mechanism for IP-to-MAC resolving, which is required
for packet forwarding at the Ethernet layer. As such, in order to address this, a custom
code was implemented to manage ARP requests and replies.

Spoofing UDP as TCP for AWS Throughput: As was pointed out earlier, AWS EC2
throttles UDP traffic. Using iperf3 in UDP mode, we observed an approximate limit
of 100 Mbit/s for UDP traffic. Given this limitation, the TCP protocol ID was set in the
IP header in order to spoof it to resemble TCP packets, which do not get throttled.
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In this thesis, we analysed io_uring’s performance in network-intensive operations,
specifically within the context of transactional cloud database systems. Our experi-
mental results revealed that io_uring implementations surpassed a traditional POSIX
approach across various key performance indicators. Particularly noteworthy was the
observation of up to a 22% boost in throughput and a decrease in context switches
when utilizing io_uring. These findings strongly indicate that io_uring could provide
significant advantages for cloud-based database systems, especially for components
such as page servers that heavily depend on efficient network communication.

The better performance of io_uring can be attributed to its several features. The
ability to batch submissions reduces system call overhead, a critical factor in high-
performance networking scenarios. The reduction in context switches, as evidenced
by our performance metrics, results in higher CPU efficiency. Furthermore, io_uring’s
design allows for better handling of concurrent connections, which is relevant for cloud
database systems that must manage multiple simultaneous client requests and the
limitations of the AWS EC2 networking.

However, our thesis also highlighted challenges in conducting precise performance
evaluations in cloud environments. Throughout our experiments on AWS EC2 instances,
we observed substantial variability in network performance, especially when using
TCP streams. This variability manifested as fluctuations in throughput and inconsistent
performance across different instance types and regions.

The noise in the AWS EC2 environment poses a significant challenge for accurate
benchmarking. While cloud platforms offer convenience and scalability, they introduce
numerous uncontrollable variables that can impact network performance. These factors
include resource contention with other virtual machines, variations in underlying
hardware, and the opaque nature of the virtualized network infrastructure.

In light of these challenges, we propose that future work in this area should consider
conducting experiments in a more controlled, local environment. A setup consisting
of two physical machines each connected via dedicated NIC would provide a more
stable and reproducible environment for precise performance measurements. This
approach would allow for better isolation of the factors directly related to io_uring’s
performance, without the confounding variables introduced by cloud virtualization.
Additionally, such a setup can potentially save money in the long run by eliminating
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ongoing cloud infrastructure costs associated with extended experimentation periods.
While our primary focus was on io_uring, we also briefly explored other approaches

such as DPDK and higher-level abstractions like tokio-uring. Each of these approaches
presents its own set of tradeoffs. DPDK offers the potential for even higher performance
through kernel bypass but comes with increased complexity and hardware require-
ments. On the other hand, tokio-uring provides a more developer-friendly interface
but at the cost of some performance overhead.

Despite the challenges in benchmarking, our results suggest that io_uring has a great
potential for improving the performance of networking for cloud-based transactional
database systems. The observed improvements in throughput and CPU efficiency could
translate to better resource utilization and increased capacity for page servers and
other network-intensive components. However, the variability we observed in the cloud
environment underscores the need for robust and adaptive networking strategies that
can handle fluctuations in available bandwidth and latency.

Moving forward, we see several directions for future research. Conducting more
controlled experiments in a local, non-virtualized environment would provide valuable
baseline data for comparison with cloud-based results. Further investigation into the
integration of io_uring with specific cloud database architectures could yield insights
into real-world performance gains.

The insights gained from this thesis extend beyond the specific context of transactional
cloud databases. The challenges we encountered in cloud-based performance testing
are relevant to a wide range of network-intensive applications. Our findings highlight
the complexity of performance optimization in cloud environments and the need for
careful consideration of environmental factors in benchmarking and system design.

The findings of this thesis have reinforced the importance of environmental consider-
ations in networking benchmarks. While cloud platforms offer many advantages, they
also introduce complexities that can obscure the true performance characteristics of
systems under test. Nevertheless, our results demonstrate that low-level performance
tuning, such as the adoption of io_uring, can yield significant benefits even in cloud
environments.

It is important to acknowledge the limitations of this thesis. Our focus on specific
AWS EC2 instance types may limit the generalizability of our findings to other cloud
providers or instance types. Time and budget constraints prevented us from fully
exploring some promising avenues, such as a more comprehensive implementation
using DPDK. Most significantly, the variability inherent in the cloud environment makes
it challenging to draw definitive conclusions about absolute performance metrics.
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In this thesis, we explored efficient networking techniques relevant to transactional
cloud database systems. The particular focus was on io_uring, a modern Linux API
which can be used for high-performance network programming. The research was
motivated by the increasing importance of network stack efficiency and performance
in cloud-based database systems, especially in light of the high-speed networking
capabilities offered by platforms like AWS EC2.

We began by examining the challenges of traditional networking approaches used
in Linux. Our investigation of io_uring revealed key features like shared ring buffers,
batched submissions, and zero-copy design that can reduce system call overhead and
enhance performance.

Our experiments on AWS EC2 instances provided insights into performance char-
acteristics of io_uring compared to traditional POSIX networking approaches. The
results demonstrated that io_uring consistently outperformed POSIX implementations
in terms of throughput, with lower CPU utilization and fewer context switches. This
performance advantage was particularly evident in scenarios with multiple connec-
tions per thread, where we could see io_uring’s efficient handling of concurrent I/O
operations, which just fit in with the batch submission design.

However, we also faced some limitations and challenges with the variability in
network performance on AWS EC2 instances with TCP streams. This highlights the
complexity of optimizing network performance in cloud environments. We observed
that individual connections often displayed unstable throughput with fluctuating over
time. This shows the importance of designing a robust and adaptive networking
strategy in cloud database systems, which can account for these fluctuations.

While our exploration of DPDK was limited due to time and budget constraints, it
offered a glimpse into the potential of kernel bypass techniques for further performance
improvements. Future work could go deeper into DPDK and other kernel bypass meth-
ods to investiage their performance characteristics for usecases relevant to transactional
cloud database systems.

We also examined Rust-based implementations using the tokio-uring library, which
offers an abstraction over io_uring within an asynchronous runtime. It was found that
while it offers ease of use, the abstraction comes at the cost of performance overhead
compared to implementations interfacing directly with io_uring. Ultimately, in a
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case with more realistic traffic, or with clever batching on the application level, the
performance overhead could be lower; however, this would require more work on the
application side to do this right.

In conclusion, this thesis demonstrates that io_uring represents a significant ad-
vancement in Linux’s asynchronous I/O capabilities. This offers concrete benefits
for network-intensive applications like cloud database systems. Its ability to reduce
system call overhead, improve CPU efficiency, and handle concurrent connections
effectively makes it a promising technology for optimizing network performance in
cloud environments.

Future research could explore more deeply the integration of io_uring with spe-
cific cloud database architectures, investigate its performance in real-world database
workloads, and examine its interplay with other emerging networking technologies.
Additionally, it would interesting to see a DPDK implementation of the server and
the client, as well as a comparison of performance between DPDK and io_uring. As
cloud providers continue to enhance their networking capabilities, ongoing study will
be crucial to fully leverage these advancements for the benefit of transactional cloud
database systems.
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A. Appendix: Code and Results

You may find the code and the results from this thesis in the following repository on
GitHub - https://github.com/sssemil/thesis_code.
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B. Appendix: Flame graphs

The following chapter of the appendix contains the full flame graphs for the io_uring
server and client.
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Figure B.1.: Flame graph of the io_uring client implementation. The x-axis represents
the percentage of total samples, while the y-axis shows the stack depth.
Each rectangle represents a function in the stack, with wider rectangles
indicating functions where more time is spent.
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Figure B.2.: Flame graph of the io_uring server implementation. The x-axis represents
the percentage of total samples, while the y-axis shows the stack depth.
Each rectangle represents a function in the stack, with wider rectangles
indicating functions where more time is spent.
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